Structure/function analysis of tristetraprolin (TTP): p38 stress-activated protein kinase and lipopolysaccharide stimulation do not alter TTP function.
نویسندگان
چکیده
Tristetraprolin (TTP) is the only trans-acting factor shown to be capable of regulating AU-rich element-dependent mRNA turnover at the level of the intact animal; however, the mechanism by which TTP mediated RNA instability is unknown. Using an established model system, we performed structure/function analysis with TTP as well as examined the current hypothesis that TTP function is regulated by p38-MAPKAP kinase 2 (MK2) activation. Deletion of either the N- or C-terminal domains inhibited TTP function. Extensive mutagenesis, up to 16%, of serines and threonines, some of which were predicted to mediate proteasomal targeting, did not alter human TTP function. Mutation of the conserved MK2 phosphorylation sites enhanced human TTP function in both resting and p38-stress-activated protein kinase-MK2-activated cells. However, p38-stress-activated protein kinase-MK2 activation did not alter the activity of either wild-type or mutant TTP. TTP localized to the stress granules, with arsenite treatment reducing this localization. In contrast, arsenite treatment enhanced stress granule localization of the MK2 mutant, consistent with the involvement of additional pathways regulating this event. Finally, we determined that, in response to LPS stimulation, human TTP moves onto the polysomes, and this movement occurs in the absence of 14-3-3. Taken together, these data indicate that, although p38 activation alters TTP entry into the stress granule, it does not alter TTP function. Moreover, the interaction of TTP with 14-3-3, which may limit entry into the stress granule, is not involved in the downstream message stabilization events.
منابع مشابه
MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay.
Stress granules (SGs) are dynamic cytoplasmic foci at which stalled translation initiation complexes accumulate in cells subjected to environmental stress. SG-associated proteins such as TIA-1, TIAR and HuR bind to AU-rich element (ARE)-containing mRNAs and control their translation and stability. Here we show that tristetraprolin (TTP), an ARE-binding protein that destabilizes ARE-mRNAs, is re...
متن کاملMitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element.
The mitogen-activated protein kinase (MAPK) p38/MAPK-activated protein kinase 2 (MK2) signaling pathway plays an important role in the posttranscriptional regulation of tumor necrosis factor (TNF), which is dependent on the adenine/uridine-rich element (ARE) in the 3' untranslated region of TNF mRNA. After lipopolysaccharide (LPS) stimulation, MK2-deficient macrophages show a 90% reduction in T...
متن کاملCasein kinase 2 regulates the mRNA-destabilizing activity of tristetraprolin.
Tristetraprolin (TTP) is an AU-rich element-binding protein that regulates mRNA stability. We previously showed that TTP acts as a negative regulator of VEGF gene expression in colon cancer cells. The p38 MAPK pathway is known to suppress the TTP activity. However, until now the signaling pathway to enhance TTP function is not well known. Here, we show that casein kinase 2 (CK2) enhances the TT...
متن کاملMolecular mechanisms of phosphorylation-regulated TTP (tristetraprolin) action and screening for further TTP-interacting proteins.
TTP (tristetraprolin) is an RNA-binding protein which regulates mRNA stability or translation or both. The molecular mechanisms which are responsible and which discriminate between regulation of mRNA stability and translation are not completely understood so far, but are clearly dependent on p38 MAPK (mitogen-activated protein kinase)/MK (MAPK-activated protein kinase) 2/3-mediated phosphorylat...
متن کاملPosttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway, acting through the downstream kinase MK2, regulates the stability of many proinflammatory mRNAs that contain adenosine/uridine-rich elements (AREs). It is thought to do this by modulating the expression or activity of ARE-binding proteins that regulate mRNA turnover. MK2 phosphorylates the ARE-binding and mRNA-destabilizing prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 174 12 شماره
صفحات -
تاریخ انتشار 2005